我們的服務(wù)符合學(xué)術(shù)規(guī)范和道德
專業(yè) 高端讓您使用時(shí)沒(méi)有后顧之憂
投稿咨詢
代數(shù)組合學(xué)雜志發(fā)表論文,其中組合學(xué)和代數(shù)互動(dòng)在一個(gè)重要和有趣的方式。這種相互作用可能通過(guò)使用代數(shù)方法研究組合結(jié)構(gòu),或?qū)⒔M合方法應(yīng)用于代數(shù)問(wèn)題來(lái)實(shí)現(xiàn)。組合學(xué)可以是枚舉的,也可以涉及擬陣、波塞特、多邊形、代碼、設(shè)計(jì)或有限幾何。代數(shù)可以是群論,表示論,格論或者交換代數(shù),舉幾個(gè)例子。這本雜志為這門學(xué)科提供了一個(gè)理想的資源,為組合學(xué)的研究人員,以及對(duì)組合結(jié)構(gòu)有濃厚興趣的數(shù)學(xué)和計(jì)算機(jī)科學(xué)家提供了一個(gè)關(guān)于代數(shù)組合學(xué)的論文的單一論壇。
The Journal of Algebraic Combinatorics publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems. The combinatorics might be enumerative, or involve matroids, posets, polytopes, codes, designs, or finite geometries. The algebra could be group theory, representation theory, lattice theory or commutative algebra, to mention just a few possibilities.This journal provides an ideal resource to the subject, providing a single forum for papers on algebraic combinatorics for researchers in combinatorics, and mathematical and computer scientists with a strong interest in combinatorial structure.
| 大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
| 數(shù)學(xué) | 3區(qū) | MATHEMATICS 數(shù)學(xué) | 3區(qū) | 否 | 否 |
| JCR分區(qū)等級(jí) | JCR所屬學(xué)科 | 分區(qū) | 影響因子 |
| Q3 | MATHEMATICS | Q3 | 0.963 |
* 請(qǐng)認(rèn)真填寫(xiě)需求信息,學(xué)術(shù)顧問(wèn)24小時(shí)內(nèi)與您取得聯(lián)系。